Assessing Metrics for Estimating Fire Induced Change in the Forest Understorey Structure Using Terrestrial Laser Scanning

نویسندگان

  • Vaibhav Gupta
  • Karin J. Reinke
  • Simon D. Jones
  • Luke Wallace
  • Lucas Holden
چکیده

Quantifying post-fire effects in a forested landscape is important to ascertain burn severity, ecosystem recovery and post-fire hazard assessments and mitigation planning. Reporting of such post-fire effects assumes significance in fire-prone countries such as USA, Australia, Spain, Greece and Portugal where prescribed burns are routinely carried out. This paper describes the use of Terrestrial Laser Scanning (TLS) to estimate and map change in the forest understorey following a prescribed burn. Eighteen descriptive metrics are derived from bi-temporal TLS which are used to analyse and visualise change in a control and fire-altered plot. Metrics derived are Above Ground Height-based (AGH) percentiles and heights, point count and mean intensity. Metrics such as AGH50change, mean AGHchange and point countchange are sensitive enough to detect subtle fire-induced change (28%–52%) whilst observing little or no change in the control plot (0–4%). A qualitative examination with field measurements of the spatial distribution of burnt areas and percentage area burnt also show similar patterns. This study is novel in that it examines the behaviour of TLS metrics for estimating and mapping fire induced change in understorey structure in a single-scan mode with a minimal fixed reference system. Further, the TLS-derived metrics can be used to produce high resolution maps of change in the understorey landscape.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detecting Change in Burnt Landscapes using a Terrestrial LiDAR System

A Terrestrial LiDAR system or Terrestrial Laser Scanner (TLS) was used to detect changes in burnt landscapes. Since wildfires are a common occurrence in the Australian landscape, prescribed burns are routinely carried out by land management agencies and government departments. These prescribed burns reduce the fuel load which decreases the severity of subsequent unplanned wildfires. Recent adva...

متن کامل

Combining Airborne and Terrestrial Laser Scanning Technologies to Measure Forest Understorey Volume

A critical component of the forest ecosystem, the understorey supports the vast majority of wildlife habitat and total ecosystem floristic diversity. Remote sensing data have been developed to provide information at different scales for surveys of forest ecosystems, but obtaining information about the understorey remains a challenge. As rapid and efficient tools for forest structure attribute e...

متن کامل

An Assessment of Pre- and Post Fire Near Surface Fuel Hazard in an Australian Dry Sclerophyll Forest Using Point Cloud Data Captured Using a Terrestrial Laser Scanner

Assessment of ecological and structrual changes induced by fire events is important for understanding the effects of fire, and planning future ecological and risk mitigation strategies. This study employs Terrestrial Laser Scanning (TLS) data captured at multiple points in time to monitor the changes in a dry sclerophyll forest induced by a prescribed burn. Point cloud data was collected for tw...

متن کامل

3d Landscape Metrics to Modelling Forest Structure and Diversity Based on Laser Scanning Data

This paper investigates the potential of laser scanning data to model forest 3d structure and its spatial pattern. Most of the existing methods for assessing structures in mountain forests are either inventory methods, which cannot be used for spatial assessments over large areas, or methods aimed only at assessing actual wood production. Several new landscape metrics are developed and applied ...

متن کامل

Aboveground Biomass Estimation of Individual Trees in a Coastal Planted Forest Using Full-Waveform Airborne Laser Scanning Data

The accurate estimation of individual tree level aboveground biomass (AGB) is critical for understanding the carbon cycle, detecting potential biofuels and managing forest ecosystems. In this study, we assessed the capability of the metrics of point clouds, extracted from the full-waveform Airborne Laser Scanning (ALS) data, and of composite waveforms, calculated based on a voxel-based approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2015